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Time-Domain Perturbational Analysis of
Nonuniformly Coupled Transmission Lines

YING-CHING ERIC YANG, STUDENT MEMBER, IEEE, JIN AU KONG, FELLOW, IEEE, AND QIZHENG GU

Abstract —A method of anafyzing the time-domain behavior of a pair of

nonuniformly coupled, dkpersiotdess transmission lines is presented. The

coupling coefficient of the system is assumed to be slowly varying with

position. The set of coupled equations is transformed into a form for which

the method of characteristics applies. Instead of numerically integrating the

coupled equations, we decouple the equations by writing the solution in the

form of a perturbational series. The resulting zeroth-order term corre-

sponds to the inverse transform of the WKB approximation in the frequency

domain, which contains only the wavefront and amplitude information. The

bigher order terms can be directly interpreted as reflections afong the lines.

Causality is satisfied to all orders. This method has the advantage of easier

implementation, and is more versatile than frequency-domain methods as

well as the brute-force numerical integration of the coupled partial dif-

ferential equations.

I. INTRODUCTION

T HE THEORY OF coupled transmission lines has been

of continuous interest to both the microwave engineer-

ing and the power engineering communities. In microwave

engineering, the energy exchange between coupled lines is

of great concern and has been studied extensively [1]–[3],

while in power engineering, the emphasis is on transient

analysis [4], [5]. With the increasing applications of micro-

strip transmission lines in high-speed digital integrated

circuits, the problem of eliminating crosstalk between

adj scent lines becomes more important [6]–[9]. Because of

the complex geometries, such as the presence of crossing

wires at different heights [8], the coupling between two

parallel lines is in general nonuniform. Accordingly, we

need a more complete transient analysis of nonuniformly,

as well as uniformly, coupled transmission lines.

Traditionally, the transient analysis of transmission lines

was done in the frequency domain, and then inverse trans-

formed to the time domain. Although straightforward,

these methods were restricted in scope because of the

difficulty involved in obtaining the solution analytically for

general cases. There have been many articles treating tran-

sients on single, lossless, uniform transmission lines [10],

[11], which can be easily extended to uniformly coupled

multiline structures, and all the answers were obtained in

closed form. Work has been done on transients involving
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resistive, or more generally, dispersive transmission lines

[12-[15]. As for nonuniformly coupled lines, only a few

special cases have been investigated. The WKB approxima-

tion, which is a standard technique for solving inhomoge-

neous wave equations, was widely used for analyzing single

nonuniform transmission lines; however, it could get very

complicated for higher order analysis when more lines are

added. Direct time-domain formulations are usually set up

for numerical integration, and the final forms are given by

finite-difference equations [4]. Branin [16] introduced the

method of characteristics to solve the transient problem of

a single uniform, lossless line and constructed an equiv-

alent circuit model to facilitate the implementation of his

algorithm. Chang [17] generalized this concept to treat

multiconductor lines. For nonuniformly coupled lines, gen-

eral analytical schemes are not available. Although brute-

force numerical integration lacked the direct link to physi-

cal interpretation as can be found in the case of uniformly

coupled lines where the solution is written as the combina-

tion of several “modes” which stand for waves of constant

amplitudes traveling in different directions with prescribed

velocities, it has been adopted in some practical applica-

tions [18].

It is the purpose of this paper to show that by a suitable

choice of transformation and a combination of the method

of characteristics and perturbational series, we can obtain

the transient response with sufficient accuracy from a set

of iterative integration formulas which bear physical mean-

ings. Each term in the perturbational series represents

repetitive reflections along the lines due to nonuniform

coupling. Moreover, for the case when the two lines are

identical, the final solutions are given in closed form up to

the first-order terms if the excitation is a unit step. The

responses due to other types of input can be obtained by

convolution. Therefore, in terms of efficiency, this method

is superior to the usual frequency-domain methods, as well

as the purely numerical integration approach in the time

domain.

II. FORMULATION OF COUPLED TRANSMISSION-LINE

EQUATIONS

Consider two nonuniformly coupled dispersionless trans-

mission lines, as shown in Fig. 1, where a voltage source

e,(t) is applied at line 1. The time-domain behavior of this

system is governed by the following set of coupled equa-
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Fig. 1. Circuit diagram for coupled transmission lines.

tions:

ilel
—+L~+L ~=~
ax ‘ at m at

(la)

(lb)

(lC)

(id)

where Ll, L2, Cl, C2, Lm, Cm are all functions of position x.
From the transmission-line theory, we know that these

parameters are related to the impedance parameters

LIO, L20, CIO, C20 [19] by

L,= L,. – Lm

I

fori=l,2. (2)

c,= C,. + cm

A. Coupled-Mode Ana/wis

The first step is to decouple the four equations into two

separate pairs. We use the following transformations [19]:

=A(el+Z,il)
a“ R

fori=l,2 (3)

where

z,(x) =~~, i=l,2

stand for self characteristic impedances for individual lines.

We assume that both lines have equal phase velocity

1 1
.— .

mgv
(4)

and that the propagating modes on the lines are quasi-TEM.

The inductive coupling coefficient k~ and the capacitive

coupling coefficient kc are equal, and we can discard the

subscripts L, C and write

Lm

k=m=&”
(5)

For conciseness, we express the transformed equations in

matrix form

%+(:-2)%+(::)A=o “)

where

A= (al+ a2_ al- az+)’

and

()P= ; :2

in which p, = d [ln ~~]/dx. The transformation given

by (3) is known as the codirectional-contradirectional

decomposition for coupled-mode equations.

B. Solution by Method of Characteristics

The solution to (6) is complicated by the presence of

p ~, pz. In fact, there is no general analytical technique

unless ZI and Z2 are independent of position x, which was

the case discussed in [19]. In this paper, however, we shall

be able to treat more general cases for which Z,(x) and

k(x) are slowly-varying functions of x using a combina-

tion of the method of characteristics and perturbational

series.

Mathematically (6) is a hyperbolic system of partial

differential equations and the method of characteristics is a

standard way of solving this kind of problem. To apply the

‘method of characteristics, there can be, firstly, only one

dependent variable in derivative terms of any individual

equation, and, secondly, for each equation, we then form a

family of curves called characteristics on which the equa-

tion involved becomes an ordinary differential equation

[20].

To satisfy the first requirement, we introduce the trans-

formation

()~= TOA

‘OT
(7)

where Y = (F B b j) t and T must diagonalize Q. When

expressed in terms of Y, the matrix equation becomes

/h+ o 0 o\

ay o A_ o 0 ay
—+
ax o 0 A-

— = FY.
o at

(8)

\ 000 ‘+/
There are two families of characteristics for (8), each

associated with two dependent variables among the four.

1) For F and f, the parametric equations of the char-

acteristics family rl are

(9)

or, after canceling S.L

Jt– A+ dx = const. (lo)

And on any characteristic curve, we have

dF
—=-
dsl

P1lF+ 312B + M + Plof (ha)
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2) For B and b, the characteristics family rz is specified

by

dx dt
—. 1 —= A.
dsl dsz

(12)

or

J
t– A_ dx =const. (13)

On any characteristic curve, we have

dB
~ = P21F+ ~22B + ?23b + ~zdf (14a)

2

db
—=”
ds2

P31F+ ~32B + j33b + ~3df. (14b)

In theory, we can numerically integrate (11) and (14) on

the characteristics to solve the problem. Indeed, this is the

scheme adopted in some previous work for a single trans-

mission line, e.g., [18]. However, these ordinary differential

equations are coupled; thus, the numerical integrations

become more and more difficult as the number of lines

increases. The way to get around this is to resort to

perturbational series. We need to elaborate on the transfor-

mation (7). Besides diagonalizing Q, we further require the

diagonal terms of } to be zero. All such T can be written

explicitly as

T=c(l–k2)
(

-1/4 lmz+m Ji=I-m

il’=z-mz JR’T+lm=z )

(15)

where c is an arbitrary constant. For convenience, we

choose c =1. The related quantities are given

and

F=

o

– k’

2(1–k2)

1
Pll

P21

– k’

2(1–k2)

o

P12

P22

Pll

P21

o

– k’

2(1–k2)

as follows:

(16)

P12

P22

– k’

2(1–k2)

o

(17)

where P1l, P12, Pzl, P22 are the same order as pl,-p2. With
our assumptions on k(x) and p,(x), we expect P Y in (8)

to be small as compared with the terms on the left-hand

side. Therefore, w: formally construct a perturbational

series representation of the solution

Y=

The following iterative equations are obtained:

dF(n+l)

dsl = –

dB(H+l)

ds2 = –

db(n+l)
— .—

ds2

df(n+l)
— .—

dsl

The problem is

following.

k’
B(n) + pllb(n) +p12f ‘“)

2(1–k2)

(19a)

k’
F(n) + p21b (n) + p22f (n)

2(1–k2)

(19b)

2(~!’kz)f ‘“)+ p11F(”)+p12B(”)

(19C)

k’
b(n) +p21F(n) +p22B(n).

2(1–k2)

(19d)

simplified considerably because of the

1) The zeroth-order equations

dF(0) dB 0 db@) df @)
— .

dsl ‘=—=
—=0

ds2 ds2 dsl

have closed-form solutions

F(0)= Fo(t-J~+dx) f(0)= fo(@+dj

(20a)

‘(0)= Bo(t+JA+dxl b(0)= bo(’+JA+dx)-

(20b)

2) All higher order terms are generated from single

integration over the previous order terms, hence there are

no unknowns on the right-hand sides of (19a) –(19d) as we

carry out the iteration steps. The coupled ordinary dif-

ferential equations (11) and (14) are now reduced to a
problem involving a simple indefinite integral.

Physically, every characteristic curve stands for a con-

stant phase front, and every expression in (20) represents a

traveling wave of constant amplitude. F(o) and f ‘0) propa-

gate along the (+ x)-direction, while B(o) and b(o) propa-

gate along the (– x)-direction, and with the same speed.

All higher order terms have similar properties as the corre-

sponding zeroth-order terms, except that the amplitudes no

longer remain constant as the waves propagate because the

right-hand sides of (19a) –(19d) are not zero.

In the following section, we shall demonstrate the power

of this perturbational approach and its physical signifi-

cance by applying it to a wide class of problems.

III. PERTURBATIONAL ANALYSIS OF A PAIR OF

IDENTICAL LINES

As an example, consider the case when the two lines

have identical parameters. We further assume that Llo =

L.. = L.= const. and C,. = C,.= C. = const. Thus, the

F

1[1[1

F (0) F (1)

B B (0) B(l)

b = b(o) + b(l) ‘“””” (18)

f f@) f (1)
.“ . .“ -“ “
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phase velocity COand characteristic impedance ZO, defined

by

/
Co=l R

and

Z.= (LO/CO

respectively, will also be independent of position x. From

(2) and (5), we can then express the line parameters in

terms of LO, CO, and k(x)

L1(x)=Lz(x) =LO/(l+ k(x))

Cl(x) =C,(x)= co/(l–k(x)) .

Thus

Z,(X) =Z2(X)= ~=zo{~
and

ld l–k k’
Pl=P2=~~ln—=– l+k 2(1–k2) “

(21)

We also find that

A+=4m@=g=l/co. (22)

The characteristics curves are straight lines in x – t space,

thus eliminating the need to numerically evaluate ~A, dx.

With p ~ and p2 known, we then calculate

P113P122 P21j P22 EUId obtaiII the following exPficit form for
the iterative equations:

dF(n+l) k’ k’
B(n) + b(n) (23a)

dsl ‘– 2(1–k2) 2(1–k2)

dB(n+l) k{
F(n) +

ds2 = – 2(1–k2) 2(~~k2)f(”)

(23b)

db(n+l)

‘= - 2(~~kz)f(n)+ 2(1~kz)F(”) (23c)ds2

df(n+o kt k’
b(a) + B(n).

dsl = – 2(1–k2) 2(1–k2)

(23d)

Here (23a) and (23d) are valid only along the curves of

the characteristics family 171, specified by t – x/cO =

constant, whereas (23b) and (23c) are valid only along the

curves of the characteristics family r2 specified by t +

x/c. = constant.

Suppose the excitation voltage is e,(t)= u(t) and both
ends of the two lines are matched, i.e., ZL = Z(1), Z. =

Z(0), the initial states will be zero for any dependent

variable and the boundary conditions for al+, al_, a z+, a z_

are

al+(O, t)=z4(t)/~ (24a)

a2_(l, t)=0 (24b)

al_(l, t)=O (24c)

a2+ (O, t) = O. (24d)

Fig. 2. Two families of characteristics.

In view of transformation (15), the reflection coefficients at

the boundaries are determined by these boundary condi-

tions:

4(1 – k2(0))1’4
F(0)(O, t)= ~--lm+lm~(t)

+ R(0) B(O)(O, t) (25a)

forn#O (25b)F(’)(O, t) = R(0) -B(”) (O, t)

(25c)B@)(Z, t)= R(l). F(”)(l, t)

f(’)(O, t)= R(0). b(”)(O, t) (25d)

b(~)(l, 1) = R(l). f(n)(l, t) (25e)

where

~(p),= m-m

~m+/~”

A. Zeroth - Order Solutions

The solutions to the zeroth-order equations can be repre-

sented as infinite series, which arise from reflections at

both ends. The propagation diagram in x-t space (Fig. 2)

would be of use to our derivation. Judging from the

homogeneous boundary conditions (25d) and (25e), we

conclude that f ‘0) - b(o)= O. Because the procedures for

solving F(o) and B(o) are analogous to those for uniformly

coupled lines, we simply give their analytical expressions in

the final form.

Region (I): t – x/c. < O

F(O)= B@)= (). (26)

This is consistent with causality.

In the following expressions, T= l/co.

Region (II): x/c. < t < 2T – X/Co

4(1– k2(0))l’4u(t ‘X/Co)

F(0)(x, t) ❑= ~(lm+im) o (27a)

B(0)(x, t)=O (27b)
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Either there is no backward mode due to reflection at x = 1

or it has yet to reach the observer.

Region (III): 2T – x/cO < t < 2T + X/Co

4(1 – k2(o))1’4zf(t – x/co)
@)(., ,) = ~(/~+/m) (28a)

4(1 – k2(0))l’4u(t + X/C. –2T)
B(0)(x, t)= R(l)c

~(~w+i~) “

(28b)

The backward mode is received, but the second reflection

at x = O has not yet been observed.

Region (IV): 2T+ x/c. < t < 4T– X/Co

. [u(t-x/c.)+R(l) ”R(o)”u(t-x/c.-2 T)] (Zga)

4(1 – k,’(o)) ’/4
B@)(x, t)= R(l).

~({m+{~)

OU(t +X/C. –2T). (29b)

Now we have a double reflection term in the forward

mode.

Continuing the analysis, we can find the series represen-

tations for both F(o) and B(o); they are

4(1 – k2(o))”4
@.)(x, t)= /~(/~+/m)

. f [R(0) .R(l)] ‘u(t -x/c. -2nT) (30a)
~=()

4(1 - k2(0))”4
B,O,(x,,) = ~~({m+~~j

R(l) ~ [R(0) .R(l)]”u(t +x/co –2(n+l)T). (30b)
~=.

Applying the inverse transformation of (15), we get the

expressions for al+ and a z_

The zeroth-order expressions are exactly what one would

get by solving this problem with WKB approximations in

the frequency domain and transforming back to the time

domain (see Appendix). We notice that both forward and

backward propagating modes are only initiated from the

boundaries. Although there are amplitude variations with

distance, we see no reflection terms generated between

both boundaries, which should arise in view of the nonuni-

form coupling. Apparently, more terms need to be in-

cluded to account for this behavior.

B. First-Order Solutions

A close look at (23a)–(23d) reveals that the (n+ l)th-

order forward modes depend only on the n th-order back-

ward modes explicitly, and a similar relation exists between

the (n + l)th backward modes and the n th forward modes.

This fact enables us to interpret the higher order terms to

be the reflections due to nonuniform coupling along the

lines. Note that if we had not chosen the transformation

(15), the physical meaning of the iterative equations would

not be so clear.

The integration of (23) becomes even easier for the

first-order terms if we make use of (9) and (12), which

guarantee that we can substitute d/dsl and d/ds2 by

d/dx on corresponding characteristics. Together with
~@) = b(o)= O, we obtain

dF(l) k’
—= _ ~ (o)

dx 2(1–k2)

dB(l) k’
—. — ~ (o)

dx 2(1–k2)

db(l) k~
—. F (0)

dx 2(1–k2)

d~(l) k?
—=

dx
B(o) .

2(1–k2)

(32a)

(32b)

(32c)

(32d)

Under unit step excitation, F(o) and B(o) being constant

within each region as shown in Fig. 2, (32a) –(32d) will

have closed-form solutions.

(1- k2(0))l/4

{

m+- ~ [R(o) R(l)] nu(f_x/co_2nT)
‘1+= ~(l_kz(x))’/4

m’m .=0 “

, (@iF)-/m”)

(F=@+/=m }
.R(z) ~ [R(0) .R(Z)]nU(t +X/Co –2(n+l)T) (31a)

R=(J

a2_=
(1- k2(0))’z4

{

‘-- ~ [R(0) -R(l) ]”U(t-X/Co-2nT)

~(1-k2(x))1’4 @zm+/l=mr ~=o

, (EH5+F=F)

(F@m+wm )
.R(l) ~ [R(0) ”R(l)]nU(~ +X/Co –2(H+l)T) . (31b)

~=o
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t

t

o %

B3

c(l,tJ

B,

* x

Fig. 3. Integration paths on x – tspace.

With the help of the auxiliary diagram (Fig.

construct the first-order solutions as follows.

Region (I): t < x/c.

3), we now

Integration starts from BO and Ill along the directions

specified. With zero initial condition and null zeroth-order

terms, we conclude that first-order terms disappear. In

fact, with the same reasoning, causality automatically holds

for higher order terms.

Region (II): x/cO < t < 2T – x/cO

From the previous analysis, B(O) = O and F(O)= Fo, a

constant. Integration starts from (xO, to) on rlO, and along

r2. We find that

Because B(o) = O, F(l) and ~(l) are constant along any

characteristics rl. Denoting F@)(O, 1), ~@)(O, t) by

Fll(t), ~11(1), we can express F(l) and ~(l) as

(35a)F@)(x, t) = F1l(t–x/co)

f(l)(x>t)= f~,(t-x/co). (35b)

Region (III): 2T – x/c. < t < 2T + x/c.

The zeroth-order terms are

~(o) = ~.

l)(o) = R“(l)FO.

Starting from 1720,we integrate F(l), j(l) along rl and find

that

R(l)FO In (1–k(x))(l+k(x2))
~(o(x, ~) = ~.

(l+k(x))(l-k(x,))

\ L’. J

R(l)FO ~ (1+ k(x))(l– k(X2))
p(x,t) = y

(1- k(x)) (l+ k(x,))

(+fll t*

where

x2=coT+(x–cot)/2

t2=T+(t–x/co)/2.

In this manner, the boundary values of F(l),,

):; (36b)——

f ‘1) on B, can

be obtained. Denoting them by Flz(t), ~12(t), we ‘then

integrate on I’z to find B(1), b(l) as follows:

(1-k(x) )(l+k(l))
B(l)(x, t) = ~k~l+k(x))(l- ‘(1))

(1- k(x)) (l+ k(xo)) ~33a)
Bo)(x, t)=$k(l+ k(x)) (l-k(xo))

(l+k(x))(l-k(xo)) (33b)

(l+k(x))(l- k(l))
@)(X, t)= :ln (l–k(x))(l+ k(~))

f#)(X, t) = :ln (1– k(x)) (l+ ‘(X()))

where X. = (x + cot)/2.

Substituting x by O, we find the boundary values on Bt

for future use

3 in
(1 - k(0)) (l+ k(cOr/2))

B(l)(o, t) = ~
(1+ k(0)) (l- k(cot/2))

(34a)

(1+ k(o)) (l- k(cot/2))
(34b)N)(u ~) = : in (1 – k(0)) (l+ k(co~/2))

F. (1 - k(0)) (l+ k(cot/2))
F(’)((), t)= R(o)” ~ h (1+ k(o))(l– k(cot/2))

(34C)

f(l)(O,l)=R(0). ~ln
(1+ k(0))(l - k(cot/2))

(1- k(0)) (l+ k(cot/2)) -

(34d)

‘R@)F4’+:-:)‘37a)

\ co co }

For all the other regions, similar procedures apply. In

general, there are always two characteristics passing through

any interior point I’(x, t).We extend rl to the left

boundary (x= O), r2 to the right boundary (x= 1). The

boundary values for two modes can always be found with

the same scheme and the remaining two are obtained from

reflection conditions. As soon as the boundary values are

found, we integrate along the curve to get the value at P.

With this scheme, we do not have to find all the boundary

values nor all the lower order terms in the whole x – t

domain. For instance, in Fig. 3, we only need ,boundary

values up to xl and C and lower order terms up to rll and

rzl in order to find the value at P.
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-4
t i

_, ~
0123456 78

TIME (T)

Fig. 4. Input waveform.

4 , I I I 1 I 1 1

\–3.510
3 - — k(x). 025[1 ~0.6sin Wx+r/41]

7 —2.540 ‘-- k(a). 0,25
2 -

I

o -J

-1

-2 -
v

-3 L -1

+ ~
01234567 8

TIME (T)

Fig. 5. Responses on line 2 for k(x)= 0.25[1 + 0.6 sin(~x + 7/4)]

( —) and k(x) =O.25 (---).

3 - — k(x) =025[l+02sm(m+ 7/4)] -

2 -
‘--- k(x).025

I

o

-1

-2 -

-3
t i

-4 ~
0123456 78

TIME (T)

Fig. 6. Responses on line 2 for k(x)= 0.25[1 + 0.2 sin(rx + 77/4)]

( —) and /t(X)= 0.25 (---).

IV. RESULTS

While the analysis in previous section assumes unit step

excitation, the response due to general inputs can be easily

evaluated through convolution.

In this section, we present some numerical results to

verify our perturbational analysis and to examine the over-

all effect of nonuniform coupling. For convenience, both

the time scale and the position scale are normalized such

that 1 = 1 and T =1. The input waveform in Fig. 4 is used

as the excitation voltage on line 1 throughout our calcula-

tion. It has a rise time of 0.125 T, and a fall-off time of

0.0625 T. The impedance at the start of each line is Z,= 50

10 1 I 1 1 1 r 1

g— 83= 8mo

— FIRST-ORDER APPRCIX IMAT ION

s 5
g

----- ZEROTH-ORDER APPRDXIMATIOM

I-@
>g

& -5870 –

2
-5 -

+() ~

01 2345678

TIME (T)

Fig. 7. Comparison of zeroth-order approximation with first-order ap-
proximation for k(x) = 0.5[1 + 0.6 sin(~x + 7/4)].
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Fig. 8. Comparison of zeroth-order approximation with first-order ap-
proximation for k(x) = 0.5[1 + 0.6 sin(lOwx + m/4)].

Q. The output waveforms shown in all figures are taken at

the midpoints of the lines; and the magnitudes are ten

times the actual size.

In Figs. 5 and 6, we compare the output on line 2 for

both uniformly coupled and nonuniformly coupled cases.

The coupling coefficients are k = 0.25 for the dashed lines

in Figs. 5 and 6, k(x) = 0.25[1 + 0.6 sin( nx + r/4)] for the

solid line in Fig. 5, and k(x)= 0.25[1 + 0.2 sin(nx + n/4)]

for the solid line in Fig. 6. The peak values of the wave-

forms associated with nonuniform coupling coefficients

indicate that the solid line (nonuniform coupling) is closer

to the dashed line (uniform coupling) in Fig. 6 than in Fig.

5, as is expected since the coupling coefficient for the

former case is closer to that for the uniform case. This

ensures the stability of the solutions.

We also need to confirm our construction of perturba-

tional series. The two waveforms in Fig. 7 are, respectively,

the zeroth-order approximation (dashed line) and the first-

order approximation (solid line) to the response on line 2

for k(x) = 0.5[1 + 0.6 sin(n-x + m/4)]. Note that though k

can be as large as 0.8, the two approximations are quite

close, judging from the peak values. Therefore, we are sure

that the first-order solutions indeed can be treated as

perturbational terms.

Of course, when our assumption of slowly varying k(x)

does not hold, the first-order solution may not be suffi-
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Fig. 11. Response on line 2 for k(x)= 0.45+ 0.2tanh(50x – 25)

cient. For example, in Fig. 8, k(x)= 0.25[1 + 0.6 sin(lOnx

+ 7/4)], the two approximations differ significantly. But

by counting the number of peaks and troughs in one single

trip from end to end, the first-order approximation does

give some information about the variation of k(x).

We note that k(x) may also be slowly-varying yet

change drastically in a small region. In that case, the
first-order apprommation still yields accurate results. This

is illustrated in Fig. 9. Shown in Fig. 10 is the plot of k(x)

versus position x with k(x)= 0.45 +0.2 tanh(50x – 25). A

heuristic approximation to this system is two segments of

uniformly coupled lines with distinct k ( x )’s joined to-

gether at the midpoint. The response on line 2 is plotted in
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Fig. 12. Response on line 2 for k(x)= 0.45+ 0.2tanh(10x – 5).
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Fig. 14. Response on line 2 for k(x)= 0.45+ 0.2tanh(2.5x – 1.25).

Fig. 11. We discover that it is similar to what would be

observed at tlte junction of two segments described above.

With k(x) of the form a + btanh(2cx – c), we can

investigate the effects of different lengths of the transition

region between two distinct segments. In Figs. 12–14, a, b

are the same as in Fig. 11, and c = 5.0,2.5,1.25 for Figs.

12–14, respectively. It is found that as the transition

becomes more gradual, or c decreases, the peak values

of the response on line 2 decrease, but spread over

longer period.

The responses on line 1 are less sensitive to the transition

lengths of k(x). Figs. 15 and 16 show the responses for

c = 1.25 and c = 2.5, respectively. Of course, as c increases,
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Fig. 16. Response on line 1 for k(x)= 0.45+ 0.2 tanh(5.Ox – 2.5).

the peak values attenuate because more energy is trans-

ferred to line 2.

In all the figures, the resolution is 60 points/T and we

consider values up to 8T. The computation time ranges

from 1 to 2.5 on a VAX 11/750, depending mostly on the

number of output data sets required and the time spent in

evaluating k(x), since few algebraic calculations are in-

volved, The convolutions are done within 3 s. There would

be a considerable reduction in time if k(x) are obtained by

table look-up, Because the graphical results show that

calculations up to 4T will be enough for most applications,

the computation time can be cut even further.

V. CONCLUSIONS

A general time-domain forrnr.dation for two nonuni-

formly coupled dispersionless transmission lines has been

developed with the aid of the perturbational series. Causal-

ity and the reflections along the lines are automatically

included in the solution. For the simplest case with two

identical lines having arbitrary coupling coefficient k(x),

we have shown that closed-form solutions can be obtained

up to first order in k. The higher order terms are generated

iteratively, though the results indicate that we seldom need

to go beyond the first-order approximation. The implemen-

tation of the algorithm simply involves stepping in the x – t

domain. Only the data involving past-time are needed for

integration along the characteristics. The integrands con-

tain only the next lower order terms. Compared to

frequency-domain techniques, it also provides more physi-

cal insight. As indicated in Section 111, the basic approxi-

mation derived from the WKB method contains only the

wavefront and the amplitude information associated with

the two modes bouncing back and forth between two ends.

Higher order WKB analyses or perturbational series repre-

sentation [22] in the frequency domain are considerably

complicated, let alone needing a final Fourier inversion,

and the results are hard to explain physically. On the other

hand, the direct time-domain perturbational approach is

much easier to handle, as given by the previous sections. it

can be extended to other cases, such as when the loads are

not matched. Here ~(o) and b(o) will not be zero, and all we

have to do is to include their contributions in the integra-

tion, which will still be in closed form for a unit step input.

If the loads are not purely resistive, or time-varying, or

even nonlinear, the techniques described by Moharn-

madian and Tai [11], [13], [21] can be accommodated to

yield the appropriate reflection conditions. In general, as

long as there is no dispersion, this method is most efficient

and accurate for transient analysis purpose. As for pro-

spective future works, we feel that it is possible to treat the

problems in which the phase velocities of the two lines are

not equal by modifying the transformation matrix T, al-

though closed-form solutions may be hard to. come by. For

the structures involving multiple coupled lines, the concept

of coupling coefficients is not that useful. But one shall still

find it easier to look for perturbational solutions by

numerical integration than to solve the original coupled

partial differential equations.

APPENDIX

ASYMPTOTIC SOLUTION BY TRANSFORM METHOD

Assuming eJ”f dependence, the frequency-&rmain

counterpart of (6) is

,.

$+j~ (t -2)2+(;W=o ‘A1)
where A“ is the Fourier transform of A, ~ = ti/u, and

PI= P1 = – k’/(l – k2) as given by (21).
As far as the transient behavior is concerned, we can

apply high-frequency approximation techniques. For the

present case, the WKB physical optics approximation is a

natural choice.

We would neglect the third terms in (Al), since ~ > ~k

>> k’/2(l – k 2). Again, we obtain decoupled pairs of

equations. As a result, iil _ = 62+ = O can be used as the

first approximation. The remaining two equations involv-

ing al+ and &_ are made into standard form by introduc-

ing the transformation

Y=a1++t22

and changing them into two second-order equations. The
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equivalent second-order equations are

~,,_ [Ml+ ~)1’
~(l+k)

Y’+/32(1-k2)Y=0 (A2a)

~,,_ [Ml-k)]’
~(1-k)

y’+~2(1–k2)y=o. (A2b)

Since it is not of our concern, we omit the details of

physical optics approximation and simply give the solution

here. The reader is referred to standard text books, e.g.

[23]. The final form of al+ and ii_ are given by

[9]

[10]

[11]

[12]
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Asdomar Conf, Cuttats Systems & Computers, Nov. 1978,pp. .
516-520.
J. Chilo and T. Arnaud, “Coupling effects in the time domain for
an interconnecting bus in high-speed GaAs logic circuits,” IEEE
Trans. Electronic Devices, vol. ED-31, pp. 347-352, Mar. 1984.
E. Weber, Linear Transient Analysis, vol. II. New York: Wiley,
1956.
C. T. Tai, “Transients on lossless terminated transmission lines,”
IEEE Trans. Antennas Propagat., vol. AP-26, pp. 556-561, July
1978.
C. W, Barnes, “On the impulse response of a coupled-mode system,”
IEEE Trans. Microwave Theory Tech., vol. MTT-13, pp. 432-435,
July 1965.

~–J$(x)

where s(x) = ux/cO.

In both expressions, we identify the term containing
[13]

e ‘j’(x) as the forward propagating mode, while the one

containing eJstx) as the backward propagating mode. Ad- 1141

ditional information is obtained by expanding the term

1
[15]

= ~ [R(0) R(l)] ‘e-2Jn’(’).
l–R(0)R(l)e-2~S(~) ~=o

[16]

Thus, after transforming back to time domain, we find that ~171

the physical optics approximation reproduces the zeroth-

order terms.
[18]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
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