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Time-Domain Perturbational Analysis of
Nonuniformly Coupled Transmission Lines

YING-CHING ERIC YANG, STUDENT MEMBER, IEEE, JIN AU KONG, FELLOW, IEEE, AND QIZHENG GU

Abstract — A method of analyzing the time-domain behavior of a pair of
nonuniformly coupled, dispersionless transmission lines is presented. The
coupling coefficient of the system is assumed to be slowly varying with
position. The set of coupled equations is transformed into a form for which
the method of characteristics applies. Instead of numerically integrating the
coupled equations, we decouple the equations by writing the solution in the
form of a perturbational series. The resulting zeroth-order term corre-
sponds to the inverse transform of the WKB approximation in the frequency
domain, which contains only the wavefront and amplitude information. The
higher order terms can be directly interpreted as reflections along the lines.
Causality is satisfied to all orders. This method has the advantage of easier
implementation, and is more versatile than frequency-domain methods as
well as the brute-force numerical integration of the coupled partial dif-
ferential equations.

I. INTRODUCTION

HE THEORY OF coupled transmission lines has been
of continuous interest to both the microwave engineer-
ing and the power engineering communities. In microwave
engineering, the energy exchange between coupled lines is
of great concern and has been studied extensively [1]-[3],
while in power engineering, the emphasis is on transient
analysis [4], [S]. With the increasing applications of micro-
strip transmission lines in high-speed digital integrated
circuits, the problem of eliminating crosstalks between
adjacent lines becomes more important [6]-[9]. Because of
the complex geometries, such as the presence of crossing
wires at different heights [8], the coupling between two
parallel lines is in general nonuniform. Accordingly, we
need a more complete transient analysis of nonuniformly,
as well as uniformly, coupled transmission lines.
Traditionally, the transient analysis of transmission lines
was done in the frequency domain, and then inverse trans-
formed to the time domain. Although straightforward,
these methods were restricted in scope because of the
difficulty involved in obtaining the solution analytically for
general cases. There have been many articles treating tran-
sients on single, lossless, uniform transmission lines [10],
[11], which can be easily extended to uniformly coupled
multiline structures, and all the answers were obtained in
closed form. Work has been done on transients involving

Manuscript received January 16, 1985; revised June 10, 1985. This work
was supported in part by the IBM Corporation, the Joint Services
Electronics Programs under Contract DAAG29-83-00038408, and the
Army Research Office under Contract DAAG29-85-K-0079.

The authors are with the Department of Electrical Engineering and
Computer Science and the Research Laboratory of Electronics, Mas-
sachussets Institute of Technology, Cambridge, MA 02139.

resistive, or more generally, dispersive transmission lines
[12—[15]. As for nonuniformly coupled lines, only a few
special cases have been investigated. The WKB approxima-
tion, which is a standard technique for solving inhomoge-
neous wave equations, was widely used for analyzing single
nonuniform transmission lines; however, it could get very
complicated for higher order analysis when more lines are
added. Direct time-domain formulations are usually set up
for numerical integration, and the final forms are given by
finite-difference equations [4]. Branin [16] introduced the
method of characteristics to solve the transient problem of
a single uniform, lossless line and constructed an equiv-
alent circuit model to facilitate the implementation of his
algorithm. Chang [17] generalized this concept to treat
multiconductor lines. For nonuniformly coupled lines, gen-
eral analytical schemes are not available. Although brute-
force numerical integration lacked the direct link to physi-
cal interpretation as can be found in the case of uniformly
coupled lines where the solution is written as the combina-
tion of several “modes” which stand for waves of constant
amplitudes traveling in different directions with prescribed
velocities, it has been adopted in some practical applica-
tions [18].

It is the purpose of this paper to show that by a suitable
choice of transformation and a combination of the method
of characteristics and perturbational series, we can obtain
the transient response with sufficient accuracy from a set
of iterative integration formulas which bear physical mean-
ings. Each term in the perturbational series represents
repetitive reflections along the lines due to nonuniform
coupling. Moreover, for the case when the two lines are
identical, the final solutions are given in closed form up to
the first-order terms if the excitation is a unit step. The
responses due to other types of input can be obtained by
convolution. Therefore, in terms of efficiency, this method
is superior to the usual frequency-domain methods, as well
as the purely numerical integration approach in the time
domain.

II. ForMuULATION OF COUPLED TRANSMISSION-LINE
EqQuATIONS

Consider two nonuniformly coupled dispersionless trans-
mission lines, as shown in Fig. 1, where a voltage source
e (t) is applied at line 1. The time-domain behavior of this
system is governed by the following set of coupled equa-
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Fig. 1. Circuit diagram for coupled transmission lines.
tions:
% 1%+Lm%= (1a)

where L,, L,,C,,C,, L,,, C,, are all functions of position x.
From the transmission-line theory, we know that these
parameters are related to the impedance parameters
Ly, Ly, Cyg, Cy [191 by

Lz = LtO_ Lm

fori=1,2. (2)

C,=Cy+C,
A. Coupled - Mode Analysis

The first step is to decouple the four equations into two
separate pairs. We use the following transformations [19]:

1
a,i=\/7—z—i—(e,iz,i,) fori=1,2 (3)
where
Z(x)={L(x)/C(x), i=12

stand for self characteristic impedances for individual lines.
We assume that both lines have equal phase velocity

1 1

e, LG

and that the propagating modes on the lines are quasi-TEM.
The inductive coupling coefficient k; and the capacitive
coupling coefficient k. are equal, and we can discard the
subscripts L, C and write

Lm Cm
T L, aG ©)

For conciseness, we express the transformed equations in
matrix form

94 (sz o)aA+(o P

2% Lo —a/atle o

(4)

k

)A=o (6)
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where
A=(a,, a,. a;_ a2+)t
=l(1 —k)
vk -1
and
0
I
0 p,

in which p, =d[InyZ,(x)]/dx. The transformation given
by (3) is known as the codirectional-contradirectional
decomposition for coupled-mode equations.

B. Solution by Method of Characteristics

The solution to (6) is complicated by the presence of
D1, P»- In fact, there is no general analytical technique
unless Z; and Z, are independent of position x, which was
the case discussed in [19]. In this paper, however, we shall
be able to treat more general cases for which Z (x) and
k(x) are slowly-varying functions of x using a combina-
tion of the method of characteristics and perturbational
series.

Mathematically (6) is a hyperbolic system of partial
differential equations and the method of characteristics is a
standard way of solving this kind of problem. To apply the

‘method of characteristics, there can be, firstly, only one

dependent variable in derivative terms of any individual
equation, and, secondly, for each equation, we then form a
family of curves called characteristics on which the equa-
tion involved becomes an ordinary differential equation
[201].
To satisfy the first requirement, we introduce the trans-
_(T O
v=(8 9)4 (7)
where Y= (F B b f)" and T must diagonalize 2. When
expressed in terms of Y, the matrix equation becomes
A, 0 O 0
aYy 0 A_ 0 0|0y Py
x o o A ola Th
0 0 0 AL

There are two families of characteristics for (8), each
associated with two dependent variables among the four.

1) For F and f, the parametric equations of the char-
acteristics family T'; are

. formation

(8)

dx 1 dt N ‘ 9)
ds, = ds,
or, after canceling s
t— f7\+ dx = const. (10)
And on any characteristic curve, we have
dF
;ls—‘:ﬁuF"'i’lzB"‘ﬁlsb""f’Mf (11a)
1
da _ _ .
P P F+ PpB+ Pisb+ puf. (11b)
1
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2) For B and b, the characteristics family I', is specified
by

dx dt
2 2o (12)
ds, ds,
or
t— f}\_ dx = const. (13)
On any characteristic curve, we have
dB . B .
s =PuF+ PpB+ Prsb+ Pouf (14a)
2
b . . _
T Py F+ PypB + Pysb + Pauf. (14b)

2

In theory, we can numerically integrate (11) and (14) on
the characteristics to solve the problem. Indeed, this is the
scheme adopted in some previous work for a single trans-
mission line, e.g., [18]. However, these ordinary differential
equations are coupled; thus, the numerical integrations
become more and more difficult as the number of lines
increases. The way to get around this is to resort to
perturbational series. We need to elaborate on the transfor-
mation (7). Besides diagonalizing £, we further require the
diagonal terms of P to be zero. All such T can be written
explicitly as

Tm e(1—k2) VA VIHE +/I=k \/l—k—\/1+k)
Vi—k—V1+k Vi+tk+Vi-k
(15)

where ¢ is an arbitrary constant. For convenience, we
choose ¢ =1. The related quantities are given as follows:

}\_=—>\+=%v1—k2 (16)
and
— K
0 m Pu Pz
— K
. 2(1— k2) 0 Pn Py
— K
Pu Pz 0 m
— k!
Pn P2 m 0
(17)

where pyy, P12, P> Py are the same order as p,, p,. With
our assumptions on k(x) and p,(x), we expect PY in (8)
to be small as compared with the terms on the left-hand
side. Therefore, we formally construct a perturbational
series representation of the solution

F FO FOD
B B© B

Y= 5 1= 5o + HO + - (18)
f f(O) f(l)
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The following iterative equations are obtained:

dF(»+D k'
T S
(19a)
dBnth k'
& " T aa— e e
(19b)
db(n+1) k/
& " oy el pe B
(19¢)
g _ K B 4 (m (n)
ds, = 2(1- £2) P+ pyp B
(194d)
The problem is simplified considerably because of the
following.

1) The zeroth-order equations
dF©®  4BO®  4p© df O
= = == = 0
ds, ds, ds, ds,

have closed-form solutions

F(°)=F0(t—f?\+ dx), f(°)=f0(t—f>\+ dx)
(20a)

B(0)=Bo(t+f}\+dX), b(0)=b0(1+/)\+dx)-

(20b)

2) All higher order terms are generated from single
integration over the previous order terms, hence there are
no unknowns on the right-hand sides of (19a)—(19d) as we
carry out the iteration steps. The coupled ordinary dif-
ferential equations (11) and (14) are now reduced to a
problem involving a simple indefinite integral.

Physically, every characteristic curve stands for a con-
stant phase front, and every expression in (20) represents a
traveling wave of constant amplitude. F©@ and f© propa-
gate along the (+ x)-direction, while B and 5 propa-
gate along the (— x)-direction, and with the same speed.
All higher order terms have similar properties as the corre-
sponding zeroth-order terms, except that the amplitudes no
longer remain constant as the waves propagate because the
right-hand sides of (19a)—(19d) are not zero.

In the following section, we shall demonstrate the power
of this perturbational approach and its physical signifi-
cance by applying it to a wide class of problems.

III. PERTURBATIONAL ANALYSIS OF A PAIR OF

IDENTICAL LINES

As an example, consider the case when the two lines
have identical parameters. We further assume that L, =
L,,=Ly=const. and C;,=C,,=C,=const. Thus, the



YANG ef al.: NONUNIFORMLY COUPLED TRANSMISSION LINES

phase velocity ¢, and characteristic impedance Z,, defined

by
o= 1/1/L0C0v

Zy=\Ly/Cy

respectively, will also be independent of position x. From
(2) and (5), we can then express the line parameters in
terms of Ly, C;, and k(x)

Li(x)=Ly(x)= Lo/(l+ k(x))
Cix) =Cy(x) = Co/(l_ k(x)).

and

Thus
L -k
2(x) = 22(x) = \/; -2
and
1d 1-k% k’
PERT M e Ty Y
We also find that |
A, =V1-k*[L,C; =/L,Cy =1/cq. (22)

The characteristics curves are straight lines in x —¢ space,
thus eliminating the need to numerically evaluate (A, dx.

With p, and p, known, we then calculate
P11> P12> P21» Pop and obtain the following explicit form for
the iterative equations:

drh [ K (n) k' (n)
T T (23a)
v K . Koo
ds, 2(1—k2)F +2(1—k2)f
(23b)
dptn+b _ k' f(n) N k’ o (230)
ds, 2(1- k?) 2(1- k?)
v K . K
ds, 2(1—-k?) 2(1-k?)
(23d)

Here (23a) and (23d) are valid only along the curves of
the characteristics family I, specified by ¢—x/co=
constant, whereas (23b) and (23c) are valid only along the
curves of the characteristics family I’, specified by ¢+
x /co = constant.

Suppose the excitation voltage is e,(¢) = u(t) and both
ends of the two lines are matched, ie., Z,=Z(/), Z,=
Z(0), the initial states will be zero for any dependent
variable and the boundary conditions for a; ., a, ,a,.,a,_

are
ar. (0.0)=u(0) [ 2Z, (242)
a, (1,6)=0 (24b)
a,_(l,t)=0 (24¢)
a,,(0,1)=0. (24d)

1123

(v}

» X
Fig. 2. Two families of characteristics.
In view of transformation (15), the reflection coefficients at
the boundaries are determined by these boundary condi-
tions:
41— k*(0))"* )
ult

2Z,/1-k(0) +{1+ k(0)

+ R(0)BD(0,7) (25a)

FO(0,1) =

F™(0,t)=R(0)-B™(0,r) forn#0 (25b)
B™(1,t)=R(1)-F™(1,1) (25¢)
£4(0,t) = R(0)-b™(0, 1) (254d)
p™(1,t)=R(I)-f™(1,1) (25¢)

where

_1-k(p) =1+ k(p)
JT—k(p) +y1+k(p)
A. Zeroth-Order Solutions

The solutions to the zeroth-order equations can be repre-
sented as infinite series, which arise from reflections at
both ends. The propagation diagram in x—¢ space (Fig. 2)
would be of use to our derivation. Judging from the
homogeneous boundary conditions (25d) and (25¢), we
conclude that f©@=p©®=0. Because the procedures for
solving F©@ and B© are analogous to those for uniformly
coupled lines, we simply give their analytical expressions in
the final form.

R(p)

Region (I): t —x/cy<0
FO=BO=0.

This is consistent with causality.
In the following expressions, T =1{/c,.

Region (II): x/cyp<t<2T—x/cq
4(1- k2(0))*u(t - x /) "
2Z,(1+ k() +/1-k(0) )

BO(x,1)=0 (27b)

(26)

FO(x, 1) =

7a)
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Either there is no backward mode due to reflection at x =/
or it has yet to reach the observer.

Region (I11): 2T — x /¢y <t <2T+ x /¢y
4(1-k2(0)) ul(t — x/c;)
2Z, (1 +k(0) +/1-k(0))
41— k2(0))*u(t + x /ey —2T)
V22, ({1+k(0) +/1-k(0))
(28b)

The backward mode is received, but the second reflection
at x = 0 has not yet been observed.

Region (IV): 2T+ x /ey <t <4T —x /¢,
4(1- k*(0))"*
V22, (/1+ k() +/1-k(0) )
Ju(t = x/co)+ R(1)-RO)-u(t—x/co—2T)] (29a)
(1~ k*(0))"*
V2Z, (1 +k(0) +y1-k(0) )
‘u(t+x/cy—2T). (29b)
Now we have a double reflection term in the forward
mode.

Continuing the analysis, we can find the series represen-
tations for both F© and B©; they are

4(1- k*(0))"*

FO(x,t)= (28a)

BO(x,t)=R(l)-

FO(x,1) =

BO(x,1) = R(1)-

FOGe, )= P22, ([i+ k(0) +/1—k(0))
-éO[R(O)-R(l)]"u(t—x/co—ZnT) (30a)
2 1/4
BO(x,1) = 4(1-£*(0))

AZ (i k) +/1-k(0))

R()'Y [RO)-R()]"ult +x/cq—2(n +1)T). (30b)

n=0
Applying the inverse transformation of (15), we get the
expressions for a; . and a,_

(1-k2)"* [T+ k(x) +/1-k(x) &
1+ k(0) +y1-k(0)

TRz (- )

n=0

(V1+k(x) —{1-k(x))
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The zeroth-order expressions are exactly what one would
get by solving this problem with WKB approximations in
the frequency domain and transforming back to the time
domain (see Appendix). We notice that both forward and
backward propagating modes are only initiated from the
boundaries. Although there are amplitude variations with
distance, we see no reflection terms generated between
both boundaries, which should arise in view of the nonuni-
form coupling. Apparently, more terms need to be in-
cluded to account for this behavior.

B. First-Order Solutions

A close look at (23a)—(23d) reveals that the (»n +1)th-
order forward modes depend only on the nth-order back-
ward modes explicitly, and a similar relation exists between
the (n + 1)th backward modes and the nth forward modes.
This fact enables us to interpret the higher order terms to
be the reflections due to nonuniform coupling along the
lines. Note that if we had not chosen the transformation
(15), the physical meaning of the iterative equations would
not be so clear. ,

The integration of (23) becomes even easier for the
first-order terms if we make use of (9) and (12), which
guarantee that we can substitute d/ds; and d/ds, by
d/dx on corresponding characteristics. Together with
f@=pO =0, we obtain

dF® 1%

Fra T aEI (322)
dff) YS! ]sz) FO (320)
d:j - 2(1]51«2) Fo (32¢)
dg) =30 ]jkz) BO. (329)

Under unit step excitation, F@ and B© being constant
within each region as shown in Fig. 2, (32a)—(32d) will
have closed-form solutions.

2 [R(0)-R(1)]"u(t = x/cq—2nT)

" (/1= k(0) +/1+4(0) )

_ 1=k {ﬁ+k<x>-ﬁk(’c) 3
“ T Bz (- () | IR + KO

n=0

(\/F- k(x) +y1+ k(x))

" (y1—%(0) +/1+k(0) )

R(1) i_o‘,o[R(O)R(l)] "u(t+x/ce—2(n +1)T)} (31a)

2 [R(0)-R(D]"ult —x/cq—2nT)

R() Y [R(O)-R(l)]"u(t+x/c0——2(n+1)T)}. (31b)

n=
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Fig. 3. Integration paths on x—¢ space.
With the help of the auxiliary diagram (Fig. 3), we now
construct the first-order solutions as follows.

Region (I): t<x/c,

Integration starts from B, and B, along the directions
specified. With zero initial condition and null zeroth-order
terms, we conclude that first-order terms disappear. In
fact, with the same reasoning, causality automatically holds
for higher order terms.

Region (I): x/cy<t<2T—x/¢,

From the previous analysis, B(0)=0 and F(0)=F, a
constant. Integration starts from (x,, #;) on I';,, and along
T,. We find that

(1= k(x))(1+ & (x,))

B0 = ko)

1 1+ k()(1=k(x,)

PO = M T ) ke
where x, = (x + ¢gt)/2.

Substituting x by 0, we find the boundary values on B,
for future use

1o LK)+ k(eot/2))
T k@)1 K (cot/2))
1o A K@) k(eot/2))
(1 k(0))(1+ k(eot/2))
1o L= k(@) (A + k(eot/2)
(1+k(0))(1 k(cot/2))
(34¢)
(1+ £(0)) (1= k(cot/2))
(1= k(0)(A+k(cot/2))
(349)

B0, 1) =

(34a)

00, 1) = (34b)

FO(0, 1) = R(O) i

f9(0,2) = R(0)- —1
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Because B@=0, F and f® are constant along any
characteristics ;. Denoting F®(0, 1), fM(0, ) by
F1(2), f11(2), we can express F® and f® as

FO(x,1)=Fy(t-x/c,)

FOPx, 1) = fiu(1—x/¢).

Region (II): 2T —x/cy <t <2T+x /¢,
The zeroth-order terms are

FO = F,
BO=R(I)F,.

(35a)
(35b)

Starting from T, we integrate FO, fO along T, and find
that

1 RUVE, (- k(x))(1+k(x;))
FO ) = I ) A= k(x))
+Fy t,_—%) (362)
a1y ROFs | (1 R(0)(1= ()
S ) = I ) U k(x2))
+f11(t2_):_§) (36b)
where

x,=coT+ (x— cot)/2

t2=T+(t—x/c0)/2.

In this manner, the boundary values of F®, f® on B, can
be obtained. Denoting them by Fy,(¥), f1,(f), we then
integrate on T, to find B®, b as follows:

. o, (L=k(x)(1+ k(1))
BO(x,1)=7In (+k(x))(1— k(1))

x I
t+————) (37a)
¢y €

1 Fy (14 Kk(x))(1—k(1) |
bE(x, 1) = In (= k(x)) 1+ k(1))

+R(D) /1

+R(1)Fy,

x
t+—— —). (37b)
¢ €
For all the other regions, similar procedures apply. In
general, there are always two characteristics passing through
any interior point P(x,t). We extend T, to the left
boundary (x =0), [, to the right boundary (x =/). The
boundary values for two modes can always be found with
the same scheme and the remaining two are obtained from
reflection conditions. As soon as the boundary values are
found, we integrate along the curve to get the value at P.
With this scheme, we do not have to find all the boundary
values nor all the lower order terms in the whole x—¢
domain. For instance, in Fig. 3, we only need boundary
values up to 4 and C and lower order terms up to I';; and
I',, in order to find the value at P.
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INPUT WAVEFORM
e, (1)
o

-2 F .
-4 + -
-6 ) i I i 1 L 1

0 | 2 3 4 5 6 7 8

TIME (T)
Fig. 4. Input waveform.

T T T T
e k{x)=0.25[1 + 0.6sin{wx +%/4)]
= ==== k{x)*0.25
g -
g = ]
W
I —
z e
5 o .
g =2
-
D -
o
-4 | 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
TIME (T)
Fig. 5. Responses on line 2 for k(x)=025[1+0.6sin(7wx + 7/4)]

( yand k(x)=0.25 (---).
T T T T T
= ki{x}=025[I+02sin(wx+7/4)]
Z === k(x)=025
% ,
w
l;_j —
g
2
-
> .
a
o
5 -
o
-4 I L 1 1 L I 1
o] | 2 3 4q 5 6 7 8
TIME (T)

Fig. 6. Responses on line 2 for k(x)=025[1+0.2sin(7x + 7/4)]

( yand k(x) =025 (---).

1V. REesuLTs

While the analysis in previous section assumes unit step
excitation, the response due to general inputs can be easily
evaluated through convolution.

In this section, we present some numerical results to
verify our perturbational analysis and to examine the over-
all effect of nonuniform coupling. For convenience, both
the time scale and the position scale are normalized such
that /=1 and 7T =1. The input waveform in Fig. 4 is used
as the excitation voltage on line 1 throughout our calcula-
tion. It has a rise time of 0.125 T, and a fall-off time of
0.0625 T. The impedance at the start of each line is Z, = 50
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10 T T T T T T T
— 8368 8030
= ——= FIRST-ORDER APPROXIMATION
o sSr Yy - 2EROTH-ORDER APPROXIMATION
2
=
g -
= -, 0
- o
5o
= -3.870—
3 5T 7
-10 1 ) I L | | 1
0] I 2 3 4 5 6 7 8

TIME (T)

Comparison of zeroth-order approximation with first-order ap-
proximation for k(x) = 0.5[1+0.6sin(7x + #/4)].

Fig. 7.

4 Y T T T T T T

— FIRST-ORDER APPROXIMATION 4
""" ZEROTH~-ORDER APPROXIMATION

OUTPUT WAVEFORM
0e, i,

TIME (T)

Fig. 8. Comparison of zeroth-order approximation with first-order ap-
proximation for k(x) = 0.5[1+0.6sin(107x + 7/4)].

Q. The output waveforms shown in all figures are taken at
the midpoints of the lines; and the magnitudes are ten
times the actual size.

In Figs. 5 and 6, we compare the output on line 2 for
both uniformly coupled and nonuniformly coupled cases.
The coupling coefficients are k£ = 0.25 for the dashed lines
in Figs. 5 and 6, k(x)=0.25[1+0.6sin(7x + 7 /4)] for the
solid line in Fig. 5, and &(x)=0.25[1+0.2sin(7x + 7/4)]
for the solid line in Fig. 6. The peak values of the wave-
forms associated with nonuniform coupling coefficients
indicate that the solid line (nonuniform coupling) is closer
to the dashed line (uniform coupling) in Fig. 6 than in Fig.
5, as is expected since the coupling coefficient for the
former case is closer to that for the uniform case. This
ensures the stability of the solutions.

We also need to confirm our construction of perturba-
tional series. The two waveforms in Fig. 7 are, respectively,
the zeroth-order approximation (dashed line) and the first-
order approximation (solid line) to the response on line 2
for k(x)=0.5[1+0.6sin(wx + 7w/4)]. Note that though &
can be as large as 0.8, the two approximations are quite
close, judging from the peak values. Therefore, we are sure
that the first-order solutions indeed can be treated as
perturbational terms.

Of course, when our assumption of slowly varying k(x)
does not hold, the first-order solution may not be suffi-
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Fig. 9. Response on line 2 for k(x) = 0.5{1 +0.6sin(107x + 7/4)].
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Fig. 10. k(x) versus position for k(x) = 0.45+0.2tanh(50x —25).
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Fig. 11. Response on line 2 for k(x) = 0.45+0.2tanh(50x —25).
cient. For example, in Fig. 8, k(x)=0.25[1+0.6sin(107x
+ 7/4)], the two approximations differ significantly. But
by counting the number of peaks and troughs in one single
trip from end to end, the first-order approximation does
give some information about the variation of k(x).

We note that k(x) may also be slowly-varying yet
change drastically in a small region. In that case, the
first-order approximation still yields accurate results. This
is illustrated in Fig. 9. Shown in Fig. 10 is the plot of k(x)
versus position x with k(x)=0.45+0.2tanh(50x —25). A
heuristic approximation to this system is two segments of
uniformly coupled lines with distinct k(x)’s joined to-
gether at the midpoint. The response on line 2 is plotted in
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Fig. 14. Response on line 2 for k(x) = 0.45+0.2 tanh(2.5x —1.25).

Fig. 11. We discover that it is similar to what would be
observed at the junction of two segments described above.

With k(x) of the form a+ btanh(2¢x —c¢), we can
investigate the effects of different lengths of the transition
region between two distinct segments. In Figs. 12-14, a, b
are the same as in Fig. 11, and ¢=5.0,2.5,1.25 for Figs.
12-14, respectively. It is found that as the transition
becomes more gradual, or ¢ decreases, the peak values
of the response on line 2 decrease, but spread over
longer period.

The responses on line 1 are less sensitive to the transition
lengths of k(x). Figs. 15 and 16 show the responses for
¢=1.25 and ¢ = 2.5, respectively. Of course, as ¢ increases,
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the peak values attenuate because more energy is trans-
ferred to line 2.

In all the figures, the resolution is 60 points/T and we
consider values up to 87. The computation time ranges
from 1 to 2.5 on a VAX 11 /750, depending mostly on the
number of output data sets required and the time spent in
evaluating k(x), since few algebraic calculations are in-
volved. The convolutions are done within 3 s. There would
be a considerable reduction in time if k(x) are obtained by
table look-up. Because the graphical results show that
calculations up to 4T will be enough for most applications,
the computation time can be cut even further.

V. CONCLUSIONS

A general time-domain formulation for two nonuni-
formly coupled dispersionless transmission lines has been
developed with the aid of the perturbational series. Causal-
ity and the reflections along the lines are automatically
included in the solution. For the simplest case with two
identical lines having arbitrary coupling coefficient k(x),
we have shown that closed-form solutions can be obtained
up to first order in k. The higher order terms are generated
iteratively, though the results indicate that we seldom need
to go beyond the first-order approximation. The implemen-
tation of the algorithm simply involves stepping in the x —¢
domain. Only the data involving past-time are needed for
integration along the characteristics. The integrands con-
tain only the next lower order terms. Compared to
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frequency-domain techniques, it also provides more physi-
cal insight. As indicated in Section III, the basic approxi-
mation derived from the WKB method contains only the
wavefront and the amplitude information associated with
the two modes bouncing back and forth between two ends.
Higher order WKB analyses or perturbational series repre-
sentation [22] in the frequency domain are considerably
complicated, let alone needing a final Fourier inversion,
and the results are hard to explain physically. On the other
hand, the direct time-domain perturbational approach is
much easier to handle, as given by the previous sections. it
can be extended to other cases, such as when the loads are
not matched. Here f© and »© will not be zero, and all we
have to do is to include their contributions in the integra-
tion, which will still be in closed form for a unit step input.
If the loads are not purely resistive, or time-varying, or
even nonlinear, the techniques described by Moham-
madian and Tai {11}, [13], [21] can be accommodated to
yield the appropriate reflection conditions. In general, as
long as there is no dispersion, this method is most efficient
and accurate for transient analysis purpose. As for pro-
spective future works, we feel that it is possible to treat the
problems in which the phase velocities of the two lines are
not equal by modifying the transformation matrix T, al-
though closed-form solutions may be hard to come by. For
the structures involving multiple coupled lines, the concept
of coupling coefficients is not that useful. But one shall still
find it easier to look for perturbational solutions by
numerical integration than to solve the original coupled
partial differential equations.

APPENDIX
ASYMPTOTIC SOLUTION BY TRANSFORM METHOD

Assuming e/“’
counterpart of (6) is

dependence, the frequency-domain

A

dA A .
& #5 Jolir(p )i

dx P 0 (Al)

where A is the Fourier transform of A,B=w/v, and
p1=p,=—k’/(1—k?) as given by (21).

As far as the transient behavior is concerned, we can
apply high-frequency approximation techniques. For the
present case, the WKB physical optics approximation is a
natural choice.

We would neglect the third terms in (Al), since 8 > Bk
> k’/2(1— k?). Again, we obtain decoupled pairs of
equations. As a result, 4,_=d,, =0 can be used as the
first approximation. The remaining two equations involv-
ing 4, , and &,_ are made into standard form by introduc-
ing the transformation

and changing them into two second-order equations. The
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equivalent second-order equations are

1—-k)}

Since if is not of our concern, we omit the details of
physical optics approximation and simply give the solution
here. The reader is referred to standard text books, e.g.
[23]. The final form of 4, , and d,_ are given by

1 [ (1=k2O) (T E(G) 1= k(X))

A
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Astlomar Conf. Cwrcuits Systems & Computers, Nov. 1978, pp.
516-520.
[9] T. Chilo and T. Arnaud, “Coupling effects in the time domain for
an interconnecting bus in high-speed GaAs logic circuits,” JEEE
Trans. Electronic Devices, vol. ED-31, pp. 347-352, Mar. 1984.
E. Weber, Linear Transient Analysis, vol. II. New York: Wiley,
1956.
C. T. Tai, “Transients on lossless terminated transmission lines,”
IEEE Trans. Antennas Propagat., vol. AP-26, pp. 556-561, July
1978.

(10]

(11]

[12] C.W. Barnes, “On the impulse response of a coupled-mode system,”
IEEE Trans. Microwave Theory Tech., vol. MTT-13, pp. 432-435,
July 1965.
e /5

T JelZ | (TFRQ) RO (- () 1= RORDe O

, (-FO) -k -1+ k()

R(l)ejs(x)”zﬁ(l)

) 1 [ (1=£20) (T k() — T+ k(X))

T T Z | (I K@+ k(©)(1- k()7 1= ROR@)e O

: Ala

(\/1+k(0) +{1-k(0) )(1—k2(x))1/4 1—- R(0)R(1)e 2O (A3a)
e“]S(x)

(1—k2(0))1/4(\/1—k(x) +\/1+k(x)) R(1)er=250 (a30)

(T+ 5O +/1=k(0) )(1- k3(x))"* ToRORD)e 7O

where s(x) = wx /c,.

In both expressions, we identify the term containing
e /*(*) a5 the forward propagating mode, while the one
containing ¢/°*) as the backward propagating mode. Ad-
ditional information is obtained by expanding the term

1- R(O)Rl(l)e—st(l) = 20 [R(O)R(1)]"e~ 2D,

Thus, after transforming back to time domain, we find that
the physical optics approximation reproduces the zeroth-
order terms.
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